
Verily Framework Documentation
Release 1.1.2

John L. Singleton

September 01, 2015

Contents

1 So What is Verily and How Can It Help Me? 3

2 Installation 5

3 Headless Installation 7

4 Using Verily in Vagrant 9

5 Hello World in Verily 11
5.1 Writing Your Method . 11
5.2 Writing Your Router . 12
5.3 Running Your Application . 12

6 Next Steps 15

7 Creating Applications in Verily 17

8 How Verily Applications are Structured 19
8.1 Methods . 19
8.2 How Request Parameters are Decoded . 19
8.3 Routers . 19

9 Verily Templating Guide 21

10 The Global Mutable State Contract 23
10.1 Using Sessions . 23

11 Exposing your Methods via AJAX 25

12 Adding Libraries to Your Project 27

13 Testing Verily Applications 29

14 Deploying Verily Applications 31

15 A Very Opinionated Guide To Deploying Verily Applications 33
15.1 Security Considerations . 33
15.2 NGINX . 33
15.3 Supervisor . 33

i

16 Why Verify a Web Application? 35

17 Program Specification 101 37

18 Supported Program Verification Techniques 39
18.1 Static vs Runtime Checking . 39

19 Writing Specifications 41
19.1 Enable Static Checking . 41
19.2 Enable Runtime Checking . 41

20 Indices and tables 43

ii

Verily Framework Documentation, Release 1.1.2

Contents:

Contents 1

Verily Framework Documentation, Release 1.1.2

2 Contents

CHAPTER 1

So What is Verily and How Can It Help Me?

Web applications are an increasingly important type of application. We do our banking online, manage portfolios, and
in the US, we now even manage out health care online.

However, web application development is also a very trend driven domain. Part of the way in which these trends
manifest themselves is the tools and technologies used to construct them. Web application frameworks, for example.
While much work has been done that focuses on issues of performance and productivity (eg: DRY, scaffolding,
convention over configuration) very little has been in the interest of making our web applications more reliable. This
is what Verily is all about.

Verily combines application construction recipes with static analysis to help you build more reliable web applications.
If this is the sort of thing that you are building, then Verily is for you.

3

http://en.wikipedia.org/wiki/Don't_repeat_yourself
http://en.wikipedia.org/wiki/Scaffold_(programming)
http://en.wikipedia.org/wiki/Convention_over_configuration

Verily Framework Documentation, Release 1.1.2

4 Chapter 1. So What is Verily and How Can It Help Me?

CHAPTER 2

Installation

The Verily installer comes with everything you need to start writing applications in Verily right away. To start, down-
load the latest installer from the releases page. Verily requires that you have a Java version 1.7+ and a recent version
of Maven 3.

On Windows platforms, you can install Verily simply by running the downloaded JAR file. On other platforms (Linux
and Mac) you will have to start the Verily installer via the command line as follows:

~ » sudo java -jar verily-<release>.jar

Where release is the release version of Verily that you downloaded, above.

Once Verily is installed, you can interact with it in a number of ways. The first (and perhaps most simple) is to interact
with Verily on the command line. After installing Verily, the verily executable will be available on your system’s
PATH. The command options of Verily are summed up in the listing below:

~ » verily -help
usage: verily
-contracts enable checking of contracts
-d run this application in the background
-fast do not recalculate dependencies before running
-help display this help
-init <dir> create a new Verily application in the specified

directory
-jml <path-to-jml> the path to the OpenJML installation directory.
-n <threads> the number of threads to create for handling

requests.
-new <newclass> create a new Verily Method+Router pair
-nocompile do not do internal recompile (used for development

only)
-nostatic disables extended static checking
-port <portnumber> port number to bind to (default 8000)
-run run the application
-test run the unit tests for this application
-w try to dynamically reload classes and templates (not

for production use)
-z3 <path-to-z3> the path to the Z3 installation directory.

While an IDE is not strictly necessary to work with Verily, if you are an IntelliJ user, you can use our simple VerilyIdea
Plugin for IntelliJ. You can also get the plugin from the [main page](/).

5

https://github.com/jsinglet/Verily/releases

Verily Framework Documentation, Release 1.1.2

6 Chapter 2. Installation

CHAPTER 3

Headless Installation

The Verily installer by default requires a graphical environment. If you wish to install Verily without a graphical
environment (perhaps on a server) you can use the procedure, below.

Put the following in a file called install-verily.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<AutomatedInstallation langpack="eng">
<com.izforge.izpack.panels.HelloPanel id="UNKNOWN (com.izforge.izpack.panels.HelloPanel)"/>
<com.izforge.izpack.panels.LicencePanel id="UNKNOWN (com.izforge.izpack.panels.LicencePanel)"/>
<com.izforge.izpack.panels.TargetPanel id="UNKNOWN (com.izforge.izpack.panels.TargetPanel)">
<installpath>/usr/local/Verily</installpath>

</com.izforge.izpack.panels.TargetPanel>
<com.izforge.izpack.panels.InstallPanel id="UNKNOWN (com.izforge.izpack.panels.InstallPanel)"/>
<com.izforge.izpack.panels.FinishPanel id="UNKNOWN (com.izforge.izpack.panels.FinishPanel)"/>

</AutomatedInstallation>

Download a release from the releases page and execute the following command as root:

» java -jar verily-installer-<version>.jar install-verily.xml

This will start non-interactive installation of Verily.

7

https://github.com/jsinglet/Verily/releases

Verily Framework Documentation, Release 1.1.2

8 Chapter 3. Headless Installation

CHAPTER 4

Using Verily in Vagrant

If you are using Verily within Vagrant the setup is quite straightforward, but will require the use of the headless
technique specified, above. To make this easier, users wishing to use Verily within Vagrant can use the following
Vagrantfile. To use it, put the listing below into a file called Vagrantfile and execute the vagrant up command.

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure(2) do |config|
config.vm.box = "hashicorp/precise32"
config.vm.network :forwarded_port, host: 4000, guest: 4000
config.vm.provision "shell", inline: <<-SHELL

sudo apt-get update
sudo apt-get -y install openjdk-7-jdk
sudo apt-get -y install maven

cat >/tmp/install-verily.xml <<EOL
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<AutomatedInstallation langpack="eng">

<com.izforge.izpack.panels.HelloPanel id="UNKNOWN (com.izforge.izpack.panels.HelloPanel)"/>
<com.izforge.izpack.panels.LicencePanel id="UNKNOWN (com.izforge.izpack.panels.LicencePanel)"/>
<com.izforge.izpack.panels.TargetPanel id="UNKNOWN (com.izforge.izpack.panels.TargetPanel)">
<installpath>/usr/local/Verily</installpath>

</com.izforge.izpack.panels.TargetPanel>
<com.izforge.izpack.panels.InstallPanel id="UNKNOWN (com.izforge.izpack.panels.InstallPanel)"/>
<com.izforge.izpack.panels.FinishPanel id="UNKNOWN (com.izforge.izpack.panels.FinishPanel)"/>

</AutomatedInstallation>
EOL

sudo update-alternatives --set java /usr/lib/jvm/java-7-openjdk-i386/jre/bin/java
sudo wget https://github.com/jsinglet/Verily/releases/download/v0.1.2/verily-installer-0.1.2.jar
sudo java -jar verily-installer-0.1.2.jar /tmp/install-verily.xml

SHELL
end

9

Verily Framework Documentation, Release 1.1.2

10 Chapter 4. Using Verily in Vagrant

CHAPTER 5

Hello World in Verily

In this section we are going to construct the most minimal version of a Verily application possible: the so-called
“Hello World” application. To begin, make sure you have already installed Verily and run the following command on
the command prompt from the directory in which you’d like to create your project:

~/Projects » verily -init HelloWorld
[INFO] Creating directory hierarchy...
[INFO] Done.
[INFO] Initializing Maven POM...
[INFO] Done. Execute "verily -run" from inside your new project directory to run this project.

After this command completes, you will have a new directory called HelloWorld in your current working directory.

Next, change to the newly-created directory and create a new Verily Method with the -new command:

~/Projects » cd HelloWorld
~/Projects/HelloWorld » verily -new Hello
[INFO] Creating a new Method/Router pair...
[INFO] Method/Router Pair Created. You can find the files created in the following locations:
[INFO] M: src/main/java/methods/Hello.java
[INFO] R: src/main/java/routers/Hello.java
[INFO] T: src/test/java/HelloTest.java

Note that in addition to a Verily Method, a corresponding router and unit test is also created for you. We’ll get to that
in a moment.

5.1 Writing Your Method

After creating your new method/router pair, you should see the following in the
src/main/java/methods/Hello.java file:

package methods;

import verily.lang.*;

public class Hello {

public static final void myFunction(ReadableValue<String> message){
// TODO - Write your application

}
}

11

Verily Framework Documentation, Release 1.1.2

This class corresponds to a Verily method class. There are several ways to make our example say “Hello World,” and
as you learn more about Verily you will find other methods, but for the moment we will do this by transforming the
class in the following way:

package methods;

import verily.lang.*;

public class Hello {

public static final String sayHello(){
return "Hello World";

}
}

The thing to note here is the return type of the method sayHello. You’ll notice that it’s a return type of type
String. This value will then be passed as a formal parameter to your router.

5.2 Writing Your Router

To write the corresponding router you will want to replace the generated router in your
src/main/java/routers/Hello.java with the code in the following listing:

package routers;

import verily.lang.*;

public class Hello {

public static final Content sayHello(String result) {
return new TextContent(result);

}

}

In the router, above, we have created the sayHello function. After the method class (methods.Hello.sayHello)
executes, control will be passed to the routers.Hello.sayHello function. Note that the actual parameter value
of the router method will be the return value of the methods.Hello.sayHello.

The control flow of a Verily application looks like the application flow given in the following diagram.

5.3 Running Your Application

Once you have at least one method/router pair set up, you are ready to run your web application. To do this, use the
-run option of Verily. The output below has been somewhat elided in order to highlight some of the important startup
messages Verily will create:

~/Projects/HelloWorld » verily -run
[INFO] Scanning for projects...
[INFO] Bootstrapping Verily on port 8000...
[INFO] Constructed new Verily container @ Sun Jun 08 11:44:24 EDT 2014
[INFO] Created new thread pool with [10] threads.
[INFO] Starting Verily container...

12 Chapter 5. Hello World in Verily

Verily Framework Documentation, Release 1.1.2

[INFO] The Following MRR Endpoints Are Available in Your Application:
[INFO] +----------------------+---------+-----------------+
[INFO] | ENDPOINT | METHOD SPEC | VERBS |
[INFO] +----------------------+---------+-----------------+
[INFO] | /Hello/sayHello | () | [POST, GET] |
[INFO] +----------------------+---------+-----------------+
[INFO] [verily] Reloading project...
[INFO] Starting services...
[INFO] --
[INFO] Verily STARTUP COMPLETE
[INFO] --
[INFO] Bootstrapping complete in 4.134 seconds. Verily ready to serve requests at http://localhost:8000/

Perhaps the most conceptually most important aspect of the above output is the MRR table, which has been excerpted,
below:

[INFO] The Following MRR Endpoints Are Available in Your Application:
[INFO] +----------------------+-------------+-------------+
[INFO] | ENDPOINT | METHOD SPEC | VERBS |
[INFO] +----------------------+-------------+-------------+
[INFO] | /Hello/sayHello | () | [POST, GET] |
[INFO] +----------------------+-------------+-------------+

The table printed above gives us several pieces of information about our small application:

• First, we know that there is exactly one application endpoint available.

• The endpoint that is available maps to our sayHello method at the URL /Hello/sayHello.

• The sayHello method has no formal parameters, thus we should not expect to supply any in the request URI.

• The sayHello method is available for either POST or GET requests.

To execute this method, point your web browser at: http://localhost:8000/Hello/sayHello. Your web
browser should render something similar to the figure, below:

5.3. Running Your Application 13

Verily Framework Documentation, Release 1.1.2

14 Chapter 5. Hello World in Verily

CHAPTER 6

Next Steps

In this quick start we’ve only just scratched the surface of Verily. If you’d like to start using the more advanced
facilities of Verily to be more reliable web applications, please take a look at the rest of the documentation.

15

Verily Framework Documentation, Release 1.1.2

16 Chapter 6. Next Steps

CHAPTER 7

Creating Applications in Verily

17

Verily Framework Documentation, Release 1.1.2

18 Chapter 7. Creating Applications in Verily

CHAPTER 8

How Verily Applications are Structured

8.1 Methods

8.2 How Request Parameters are Decoded

8.3 Routers

19

Verily Framework Documentation, Release 1.1.2

20 Chapter 8. How Verily Applications are Structured

CHAPTER 9

Verily Templating Guide

21

Verily Framework Documentation, Release 1.1.2

22 Chapter 9. Verily Templating Guide

CHAPTER 10

The Global Mutable State Contract

10.1 Using Sessions

23

Verily Framework Documentation, Release 1.1.2

24 Chapter 10. The Global Mutable State Contract

CHAPTER 11

Exposing your Methods via AJAX

25

Verily Framework Documentation, Release 1.1.2

26 Chapter 11. Exposing your Methods via AJAX

CHAPTER 12

Adding Libraries to Your Project

27

Verily Framework Documentation, Release 1.1.2

28 Chapter 12. Adding Libraries to Your Project

CHAPTER 13

Testing Verily Applications

29

Verily Framework Documentation, Release 1.1.2

30 Chapter 13. Testing Verily Applications

CHAPTER 14

Deploying Verily Applications

31

Verily Framework Documentation, Release 1.1.2

32 Chapter 14. Deploying Verily Applications

CHAPTER 15

A Very Opinionated Guide To Deploying Verily Applications

15.1 Security Considerations

15.2 NGINX

15.3 Supervisor

33

Verily Framework Documentation, Release 1.1.2

34 Chapter 15. A Very Opinionated Guide To Deploying Verily Applications

CHAPTER 16

Why Verify a Web Application?

35

Verily Framework Documentation, Release 1.1.2

36 Chapter 16. Why Verify a Web Application?

CHAPTER 17

Program Specification 101

37

Verily Framework Documentation, Release 1.1.2

38 Chapter 17. Program Specification 101

CHAPTER 18

Supported Program Verification Techniques

18.1 Static vs Runtime Checking

39

Verily Framework Documentation, Release 1.1.2

40 Chapter 18. Supported Program Verification Techniques

CHAPTER 19

Writing Specifications

19.1 Enable Static Checking

19.2 Enable Runtime Checking

41

Verily Framework Documentation, Release 1.1.2

42 Chapter 19. Writing Specifications

CHAPTER 20

Indices and tables

• genindex

• modindex

• search

43

	So What is Verily and How Can It Help Me?
	Installation
	Headless Installation
	Using Verily in Vagrant
	Hello World in Verily
	Writing Your Method
	Writing Your Router
	Running Your Application

	Next Steps
	Creating Applications in Verily
	How Verily Applications are Structured
	Methods
	How Request Parameters are Decoded
	Routers

	Verily Templating Guide
	The Global Mutable State Contract
	Using Sessions

	Exposing your Methods via AJAX
	Adding Libraries to Your Project
	Testing Verily Applications
	Deploying Verily Applications
	A Very Opinionated Guide To Deploying Verily Applications
	Security Considerations
	NGINX
	Supervisor

	Why Verify a Web Application?
	Program Specification 101
	Supported Program Verification Techniques
	Static vs Runtime Checking

	Writing Specifications
	Enable Static Checking
	Enable Runtime Checking

	Indices and tables

